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A GENERAL THEORY OF ELASTIC BEAMS

M. CENGiZ DOKMEcit

Department of Theoretical and Applied Mechanics, Cornell University, Ithaca, New York 14850

Abstract-The nonlinear basic equations which govern the motion of beams are developed on the basis of three­
dimensional theory of thermo-elastodynamics in terms of a reference state. A general method of expansion
together with a variational procedure is used for the formulation. Thus, a hierarchy of one-dimensional approxi­
mate theories is consistently established. The geometrical as well as physical nonlinearity are explicitly con­
sidered in the analysis. The classical theories of stress and strain in beams are directly deduced from the general
results. The theory accommodates the higher order stretching, bending and torsion of non-polar elastic beams
of uniform cross section.

1. NOTATION

Throughout the paper, a system of the right-handed Cartesian convected (intrinsic) co-ordinates Xk (k = 1,2,3)
and Einstein's summation convention are used. Accordingly, repeated Latin indices represent summation over
the range (1, 2, 3) and repeated Greek indices are summed over the range (1,2), unless indices are put within
parentheses. An index following a comma stands for partial differentiation with respect to the indicated co­
ordinate Xk, while a superposed dot denotes partial differentiation with respect to time t. Also, a star is used to
designate prescribed quantities.

EssentiaIly, new quantities are defined when they are first introduced.
The following symbols are used in the text:

d, L maximum diameter of cross-section and length of beam
d area of cross-section
«j a Jordan curve which bounds cross-section
x. a system of right-handed Cartesian convected co-ordinates
t time
u displacement vector
Ykl Lagrangian strain tensor
W kl , ekl rotation and linear strain tensors
u~m.n), Y~'i',n) displacement and strain components of order (m, n)
w~'i'·n), e~'i',n) rotation and linear strain tensors of order (m, n)
p density of the undeformed body
Ik/, SkI asymmetric Lagrangian and symmetric Kirchhoff stress tensors
[(m,n) moment of inertia of order (m, n)
T~'i'·n) stress resultants of order (m, n)
f body force vector/unit mass of the undeformed body
F~m.n), p~m,n), Q~m.n) body force, external force and effective load of order (m, n), respectively
Ck/mn isothermal elastic constants
}., Jl Lame's elasticity constants
E, v Young's modulus and Poisson's ratio
(Xkl strain-temperature constants
t stress vector measured/unit area of the undeformed body
n unit outward normal vector to the undeformed position of a surface element in the deformed

body, associated with t
second order permutation symbol
strain energy densities/unit volume and per unit length of the undeformed beam, respectively
entire volume and boundary surface of the undeformed beam
surface parts of .'7', where displacements and tractions are prescribed, respectively

t On leave from The Technical University of Istanbul.
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increment in temperature
left and right edge surfaces of the undeformed beam
entire edge and lateral surfaces of the undeformed beam
rate of twist
voluminal and aerial dilatations
velocity of shear waves in an unbounded medium
bar velocity
warping function
initial stress tensor
elements of volume, lateral surface and face boundary
line element along ~
unit outward drawn vector normal to ~

2. INTRODUCTION

IN SPITE of various significant contributions in the literature, a complete nonlinear theory
of elastic beams, which provokes further developments and enables one to make plausible
assumptions and convenient approximations to meet demands of engineering, is not
presently available. An attempt is thus made to develop a consistent fully nonlinear theory
of beams within the framework of three-dimensional theory of thermo-elasticity.

The earliest works on beams and columns may be traced back to Bernoulli, and they
are referred to Ericksen and Truesdell [1] and Truesdell [2]. These works are chiefly bound
to linear elasticity and they are formulated under ad hoc simplifying hypotheses. Since the
resulting equations are so simple and clear these theories are still being employed notwith­
standing the fact that they are lacking in increasing accuracy and estimation of errors.
Apparently, some other techniques need to be used to reach a rational theory of beams
rather than the method of hypotheses leading to the usual theories. Recently, Gol'denweizer
[3] presented a comprehensive survey on the techniques which can be used in a general
analysis of structures. In addition, Nigul [4] and Kalinin [5] briefly discussed these tech­
niques as did Green et at. [6] and Koiter [7]. Among these techniques, such as the direct
method, the asymptotic method and the method of series expansion were exhibited in
[6,8,9], [4-6, 10-12] and [13-17], respectively. Along this line, one should also mention
Ref. [18] for a general treatment of the approximate methods of analysis in elasticity
theory, involving existence and uniqueness theorems.

In the present analysis, the method of series expansion is used in the form given by
Mindlin [14] who recapitulated the method from the works of Cauchy [19] and Poisson
[20]. Mindlin and his co-authors [13-15, 21, 22] and the present author [16, 17J extensively
used the method in the formulation of one- and two-dimensional continuum theories. The
method involves the series expansion of all field quantities in terms of the appropriate
co-ordinates. The series expansion converts three-dimensional field equations of elasticity
into a hierarchy of one-dimensional approximate equations with the aid of either the
variational method of Kirchhoff [23] or a direct method of integration. Thus, the govern­
ing equations are consistently obtained. The application of the method is accomplished in
a tractable and straightforward manner. Without attempting to be exhaustive, the most
pertinent references to the present paper are mentioned here as follows.

By the use of a power series representation for stresses in terms of a small thickness
parameter, Hay [24] was the first to formulate consistently a finite displacement-small
strain theory of elastic rods. Mindlin [15] derived a linear theory of isotropic elastic beams
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by means of the variational procedure of [23], with which he examined the uniqueness of
solutions in Neumann's sense. Mindlin and McNiven [22] studied the axially symmetric
motions of an elastic rod of circular cross-section expressing displacement components in
series of Jacobi polynomials in terms of the radial co-ordinate. By the use of a series of
Legendre polynomials for displacement components in terms of lateral co-ordinates, a
one-dimensional theory of elastic bars of rectangular cross-section has been obtained by
Medick [25, 26] and Hertelendy [27] who presented some experimental results as well. As
a generalized plane stress problem, the elastic beam theory has been studied by Soler [28]
and Hashin [29]. A series of Legendre polynomials is used for isotropic rectangular strips
in [28], while a power series is used for plane anisotropic rectangular beams in [29]. The
authors of [25-27] were primarily concerned with the dynamic behavior of bars and those
of [28,29] studied the static behavior. In addition to the references above, other references
utilizing linear theory include Warner [30] and more recently Bleustein and Stanley [31]
as well as Green et al. [6]. The works of the latter three authors [8] and of Antman and
Warner [32] should be mentioned among the recent contributions to the nonlinear theory.
Starting with a series representation for the position vector, an isothermal theory of rods
is formulated in [32], while a thermo-dynamical theory is given in [8]. Mention may also
be made of the exact theories of Ericksen and Truesdell [1] and Green [33]. However, these
theories did not include the constitutive relations.

This paper aims at a rigorous derivation of the beam equations from the three-dimen­
sional field equations of elasticity, including large displacements and large angles of
rotations. A generalized variational procedure deduced from the Hamiltonian principle
and a method of series expansion for kinematic variables are used in the formulation. The
effects of inertia, both transverse and in-plane, and of temperature are included as is the
influence of heterogeneity and anisotropy of the material (thus making it applicable, for
example, to composite materials). The theory accommodates the higher order stretching,
bending and torsion of elastic beams of uniform cross-section. The governing equations
consist of the macroscopic equations of motion, the natural boundary conditions, the
strain-displacement equations and the constitutive relations.

The kinematic variables are presented in the next section. Section 4 deals with the strain­
displacement relations. The variational procedure is exhibited in Section 5. The load and
stress resultants, and the constitutive relations are given in Sections 6 and 7, respectively.
The boundary conditions and the macroscopic equations of motion for non-polar beams
of uniform cross-section are extensively studied in Section 8. A linear theory of beams and
its simplified versions are presented in Section 9. The last section is devoted to concluding
remarks.

3. KINEMATIC VARIABLES

An initially slender beam of constant cross-section is treated in this analysis. The beam
is referred to a system of right-handed Cartesian convected (intrinsic) co-ordinates Xk'

The axes Xl and X 2 are chosen as the principal axes of the cross-section. The locus of the
centroids of cross-sections is a straight line in the undeformed beam, and it is taken as the
axis X3' The cross-section of the beam is bounded by a simply-connected Jordan curve '(J,

i.e. sufficiently smooth and non-intersecting. In this context, a cylindrical beam with no
singularities of any type is supposed to be present. Consequently, the displacement and
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(3.1 )

stress fields are continuous throughout the beam space .9. Moreover, the use ofthe inequality:

d
-«1
L

where d and L are respectively the maximum diameter of cross-section and the length of
beam, allows the beam to be treated as a one-dimensional mathematical model of a three­
dimensional body.

The displacement components of a generic point in 9, based on the above considera­
tions, can be represented by

with

cc

Uk(X, t) = L P~)(Xl)' Q~k)(X2)' uim•
n)(X3' t)

m+n=O

(3.2a)

(3.2b)

Here, from the mathematical standpoint, a separation of variables solution is sought for
the nonlinear field equations which are presented in the next sections. Therefore, the
vector functions in (3.2) are unknown a priori and independent functions defined in 9.
Also, it is assumed that ul:",n) exists and is a function of class C2 (en represents the functions
with derivatives of order n, with respect to space co-ordinates Xk and time t). In the subse­
quent analysis, the two functions of the form:

(3.2c)

are to be used. If the displacement vector u is analytic with respect to the aerial co-ordinates
x" in 9, (3.2) can be regarded as a Taylor expansion of u, which is uniformly convergent in
the closed region 9, However in this case, u(m,n) is an independent function. In (3.2), Pm
and Qn' for instance, could be Legendre polynomials, Jacobi polynomials and/or any other
appropriate functions.

In contrast to the customary beam theories, the Bernoulli-Euler hypothesis is abrogated
here by virtue of (3,2), i.e. sections which are plane and perpendicular to the centroid locus
in the undeformed beam do not necessarily remain so in the deformed beam and suffer no
strains in their planes (see, e.g. Boley and Weiner [34]).

4. STRAIN-DISPLACEMENT RELATIONS

The Lagrangian strain tensor Ykl is expressed in terms of the displacement components
[35] :

(4.1)

and

(4.2)

Here, the linear strain tensor ekl and the rotation tensor (Okl are given by

(4.3)
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The series expansion in all displacement components as in (3.2) and the relations given
above imply a strain distribution of the form:

where

with

00

Yk/(x, t) = L XTX2.Yk7,n)(X3' t)
m+n=O

m+n
Yk;,n) = ek;,n) +t L [e~k - p, n - q) +W~k - p, n - q)] [e~,q) + Ol~f,q)]

p+q=O

e(m,n) = l.[(m+l)(o u(m+l,n)+o u(m+l,n»)+(n+l)(o u(m,n+I)+o ulm,n+I»)]
~/3 2 h /3 1/3 ~ 2~ /3 2/3 ~

(4.4a)

(4.4b)

(4.4c)

W~p,n) = M(m+ I)(OI/3u~m+ l,n)_OI~U~m+ I,n»)+(n+ l)(o2/3u~m,n+ 1)-02~U~m,n+ I»)]

W~3,n) = t[u~~:()-(m+l)b l~u~m+l,n)-(n+l)O 2~U~m,n+I)].

Here, Yk;,n), Ukm,n), ek;,n) and Wk;,n) are henceforth termed the Lagrangian strain tensor, the
displacement vector, the linear strain tensor and the rotation tensor of order (m, n),
respectively.

The linear version of (4.1) is simply expressed as

(4.5a)

with

(4.5b)

in (4.4).

5. VARIATIONAL PROCEDURE

When the motion of the non-polar continuum is referred to a fixed system of Cartesian
axes, the equations of local balance of momentum given in [36] are:

(5.1)

with

(5.2)

Here, ak and.h, respectively, denote the Lagrangian components of the acceleration and
the body force measured per unit mass of the undeformed body. p indicates the density of
the undeformed body, tk/ and Ski represent the asymmetric Lagrangian and symmetric
Kirchhoff stress tensors measured per unit area of the undeformed body, respectively.
When the stress vector tjunit area of the undeformed body, associated with a surface in
the deformed body, is referred to the base vectors in the deformed body, Ski arises, while
if t is referred to the base vectors in the undeformed body, tk/ ensues.
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(6.1)

Let t* and u* be the prescribed values of the stress and displacement vectors on the
boundary surface. Thus, the boundary conditions can be written in the form:

ut-uk = 0 on :;.; (5.3)

and

tt -tk = 0 on Y; (5.4)

with

tk = tlknl' (5.5)

Here, tk is the components of t, associated with a surface in the deformed body, the unit
outward drawn normal of which is nk in its undeformed position. :;.; and Y; are the parts
of the entire boundary surface Y, where the displacement and stress vectors are prescribed,
respectively.

Let to and t 1 be two arbitrary instants of time and b indicate the variation. Then,
following Love [37], there can be deduced the equation:

(jj = It dt {J. [tkl .k+p(ft - al)] bUl dv

+ Lu (Uk -un btk dS + Lu (tt - tk) bUk dS} = 0 (5.6)

from the usual version of the Hamiltonian principle. Since the variations bUk and btk are
quite arbitrary, the coefficients of these variations under the integral sign must vanish
separately over Y and at all points in the interior of 9. This leads to (5.1H5.4) and thus
verifies the variational formulation.

The variational integral (5.6) leads to the macroscopic equations of motion and to the
natural boundary conditions of beam for the case of large displacements and large angles
of rotation. This will be shown in the following sections.

6. LOAD AND STRESS RESULTANTS

The following terminology is used in the subsequent analysis. Hence, it seems appro­
priate to define them beforehand.

Let us define a body force resultant of order (m, n):

Fim•
n

) = fd PfkXjX2dA

a stress resultant of order (m, n):

T (m,n) - f xmxns dAkl - 1 2 kl
d

surface loads of order (m, n):

00

Rim,n) = L [(p. p\m+ p-1.n+q) +q. p~m+ p,n+q-l))ul!',q) + p~m+ p,n+q)ul{,:l)]

p+q=O

(6.2)

(6.3a)

(6.3b)
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and an effective load of order (m,n):

Q1m,n) = F1m,n) +P1m,n) +R1m,n).

1211

(6.4)

In these relationships, d is the area of cross-section, do is the line element of rc and
v~ = e~/l(dx/l/do) is the unit exterior normal vector on cti.

Similarly, an acceleration resultant of order (m, n):

00

u1m,n) = L /(m+ p ,n+ Q)u1p ,q)

P+Q=O

prescribed stress resultants of order (m, n) :

(6.5)

(6.6)

and an aerial moment of inertia of order (m, n):

/(m,n) = f"" x7x~ dA (6.7)

are defined. Here, it is pertinent to note that (6.7) yields the usual quantities of elementary
beam theory as

/(0,0) = A

/(1,0) = /(0,1) = /(1,1) = 0, /(2,0) = /1' /(0.2) = /2'
(6.8)

Since the principal axes x~ were situated at the centroid of cross-section /(1,0), /(0,1) and
/(1,1) readily vanish. Moreover, the following relations hold for a symmetric cross-section
with respect to Xl:

with respect to X z :

l (m,n) - ~ I
- U mmo (m,n)

and with respect to Xl and x2 :

I (m,n) ~ ~ /
U mmo • U nno ' (m,n)

where mo and no stand for any even integer and [)mn is the usual Kronecker delta.

(6.9a)

(6.9b)

(6.9c)

(7.1)

7. CONSTITUTIVE EQUATIONS

In the case of a perfectly elastic body, a strain energy function or elastic potential W
does exist [36], measured per unit volume of the undeformed body and it yields:

l(OW OW)
Ski :2 0Ykl +0Ylk •

This constitutive relation may also be used for a Hencky type elasto-plastic body as
remarked in [35].
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By the use of (4.4), (6.2) and (7.1), the constitutive relations for the stress resultants are
obtained in the form:

where

L = J" WdA.

(7.2)

(7.3)

Here, Ldenotes a strain energy function measured per unit length of the undeformed beam.
The fully nonlinear constitutive relations are expressed by (7.1)-(7.3).

The generalized linear constitutive relations given in [38] are:

(7.4)

for an initially perfect elastic, anisotropic and heterogeneous beam material subjected to a
prescribed steady temperature field 0(xd. The corresponding elastic potential can be
written as:

(7.5)

Here, Ckl",n and rxkl are the isothermal elastic constants and the thermal expansion coeffi­
cients at constant stress, respectively. From energy considerations it follows that

(7.6)

In the case of isotropic material, they reduce to:

rxkl = rxOkl

Ckl",n = ..t0kIO",n + J1(c5k",Oln + bknbcm)
(7.7)

where rx is the coefficient of linear thermal expansion, A and J1 are Lame's constants. These
in turn, can be expressed in terms of Young's modulus E and Poisson's ratio v as

with

), = 2J1v
, (l

J1 > 0,

E

J1 = 2(1 +v)

3..t+2J1 > O.

(7.8a)

(7.8b)

With the aid of (4.4), (6.2) and (7.4), the linear macroscopic constitutive equations are
obtained:

and

00

T(rn,n) = C "1('"+ p, n+ q)(y(P,q) - rx 0(p,q»
kl Mrs L.. rs rs

p+q=O

00

T1';"n) = L j(m+ p, n+ q)[A(y~:,q)- 3rx0(P,q»c5
k1
+2J1(y}!;,q) - rx0(P,q)bkl)]

p+q=O

(7.9)

(7.10)
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for anisotropic and isotropic beam materials, respectively. Here, the temperature field is
taken in the form

00

8(xk) = L xix'i8Im,n)(X3)'

m+n=O

Finally, the strain energy:

f
00 00

" = WdA =.lC " "jIP+q,r+s)(yIP,q)_ex 8 IP,q»(ylr,s)_ex 8 Ir.s»
L... 2 klmn L... L... kl kl mn mn

d p+q=Or+s=O

and the kinetic energy:

K = f (!pakak) dA = ~p ~ ~ jIP+r.q+s)illP·q)ilr·s)
d 2 2 p+q=O r+s=O

are obtained per unit length of the undeformed beam.

(7.11)

(7.12)

(7.13)

(8.1)

8. BEAM EQUATIONS OF MOTION

We now proceed to develop the nonlinear equations of motion of beams together with
the natural boundary conditions in terms of the displacement field defined previously in
Section 3 and the effective load, stress, body force and acceleration resultants given in
Section 6. For this purpose, the variational equation (5.6) is evaluated.

Consider first the volume integral in (5.6), namely

{}Jl = It 1

dtfL dX3 f [tkl,k+P(Ji-al)]bU1dA.
to 0 d

Substituting the series expansion (3.2) into this integral, performing the integrations over
a cross-section of the beam and replacing the stress and load resultants (6.1H6.8), one
obtains:

It
1 fL 00{}J - dt dx " (Tlm,nn)_m Tlm-l,n)_n Tlm,n-l)+Nlm,n)

1 - 3 L... 31,3 • 11 • 21 I
to 0 m+n=O

(8.2)

where
00

Nlm,n) = L {[mpT\i+p-2,n+q)+(np+mq)T\m/p-l,n+q-l)+qnn"tp,n+q-l)
p+q=O

+pT~i~l- l,n+q) +qT~~~l·n+q-l)]ulp,q) + T~"3+ p,n+~)ul~3'1

+ [(p+m)Tl"3+ p-I, n+q) +(q +n)TI2J+ p,n+q-l) + T~"3;l·n+q-l)]ul~3q)}. (8.3)

The surface integrals in (5.6) are:
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bJ3 ftl

dt {f (tt - tk ) JUk dA + f. (tZ - tk ) JUk dS}. (8.5)
to!/e !/,

Here, the surface part .9;;, where the displacement vector is prescribed, is taken as a portion
of the lateral surface ~, while ~, where the stress vector is prescribed, is taken as the
remaining portion of Y'l and both the left face boundary d, and the right face boundary
dr. Thus, one reads

!f = .'1;; u ~, 9,; (j ~ = 0, .9;; u .If; = .91, .:r; = Y; u !fe, Y'e = d r U .~. (8.6)

Carrying out the integrations of (8.4) and (8.5) as in the volume integral, the equations:

and

+ f.L dX3 f [pt(m,n) - (p~m,n)+ R~m,n»)) Ju~m,n)}
o m+n=O

are obtained. In (8.8a), N~1,n) is defined to be

00

N~1·n) L [(pT~i+r 1.n+q)+qT~,,;+p·n+q-l)MP,q)+ T~3+p,n+q)ui~ ~»).

p+q=O

(8.7)

(8.8a)

(8.8b)

Setting the variational integrals (8.2), (8.7) and (8.8) equal to zero for the arbitrary and
independent variations of the displacement and traction components, the hierarchy of
the one-dimensional approximate equations of motion and the corresponding natural
boundary conditions are found and given as follows.

T~1'3) - m. T\1- I,n) - n . Ti'k·n- 1) +Nim.n)+Qim,n) - p Vtm.n) = 0

ul;"·n) - ut(m.n) = 0 on.'I;;

pt(m,n) _ (p~m.n) +Rim,n») = 0 on.9';

Tz(m.n)±(T~1,n)+N~1·n») = 0 on {:}.

(8.9)

These equations are henceforth called the macroscopic equations of motion and the
natural boundary conditions of order (m, n).

Thus far, a fully nonlinear theory of beams has been established. This consists of the
strain-displacement relations (4.4), the constitutive equations (7.2) and the equations of
motion and the natural boundary conditions (8.9). In addition, it should be noted that the
initial conditions for the displacement components, i.e. u~m,n) and uLm,n) must be prescribed
at t = to, as is customary in the use ofthe Hamiltonian principle. At this point, there exists
an infinite number of equations (4.4), (7.2) and (8.9) for an infinite number of unknowns
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(ulm,n), Yli,n), T1i',n)). Thusl the governing equations are not tractable and formally deter­
minate. In order to obtain a deterministic hierarchy of the governing equations, these
infinite number of equations with their infinite number of unknowns must be consistently
reduced to a finite number of equations and unknowns by the truncation of the infinite
series.

From the foregoing analysis, it is evident that the theory, in essence, is based on the
series expansion (3.2) whose the terms ulm,n) are already assumed to exist in Section 3. Thus,
the theory of order (M, N) is defined by either

or (3.2) together with the condition:

ulm,n) = 0 for all m ~ M + 1, n~N+1.

(8.10a)

(8.10b)

Accordingly, only those quantities involved in (8.10) are considered in the governing equa­
tions. In view of (8.10), the number of unknown displacement components ulm,n) is now
reduced to 3A"; [,AI = (M + I)(N + 1)]. The required equations needed to determine these
unknowns are consistently obtained by means of the variational equation (5.6).

Besides the one described above, mention should be made of another deterministic
theory which is simply defined by the condition:

and

.¥

Uk = I xTx~ulm,n)
m+n=O

ut,n) = 0 for all (m+n) ~ ,AI+ 1.

(8.11a)

(8.11b)

A similar definition is introduced for the higher order theories of plates [14] as well as those
of rods [32]. Nevertheless, this can not be a pertinent definition for beams, since it tacitly
assumes that both of the lateral co-ordinates have the same weight in the series expansion
(3.2). For a rectangular strip or a thin beam, (3.2) degenerates into a series of the form:

N

U = "u(n)(x t) P(k)(X )
k L.. k 3, n 1

n=O
(8.12)

as has successfully been used in [28, 30]. The expansion (8.12) is not obtainable from (8.11)
as a special case, whereas (8.10) clearly contains both cases.

The governing equations of order (M, N) are coupled and nonlinear partial differential
equations, and they must be simultaneously examined for each order (M, N). These equa­
tions become ordinary differential equations when static equilibrium is considered, i.e.
time is dropped out as an independent variable.

9. A LINEAR BEAM THEORY

A general theory which characterizes the nonlinear behavior of elastic beams has been
formulated in the preceding sections. The linearized versions of the theory are now
presented.



1216 M. CENGiz DOKMECI

Dropping out all nonlinear terms in (8.9), namely

N~m,n) = N~''i(") = R~m,n) = 0 (9.1)

the equations of motion and the natural boundary conditions reduce to

T (m,n) m T(m - l,n) n T(m,n - 1) + F(m,n) + p(m,n) pU" (m,n) - 0
3k,3 - • lk -. 2k k· k - k -

uim,n) - ut(m,n) = 0 on 9;;

pt(m.n) - Pkm,n) = 0 on 9'; (9.2)

Tt(m,n)± T~''i(") = 0 on {~}.

These equations together with (4.5) constitute a beam theory which is geometrically linear
but physically nonlinear as far as the constitutive equations (7.2) are concerned. Moreover,
a fully linear theory of elastic beams can be deduced by replacing the nonlinear constitu­
tive equations (7.2) by either (7.9) for the case of anisotropy or (7.10) for that of isotropy.
This can be considered as a generalized version of the Timoshenko beam theory and it
includes all of the effects of shear and rotatory inertia. By means of further reduction; Le.
by dropping out the thermal effects in the linear field equations, the Mindlin [15J theory
of elastic and isotropic beams can be derived.

Similarly, with the aid of (9.2) other well-known beam theories can readily be obtained
as is exhibited in the remainder of this article.

9.1 Bernoulli beam theory

This familiar theory is particularly applicable to longitudinal vibrations in beams. In
the present notation, it corresponds to a linear theory of isotropic beams of order (0,0).

Setting all stress, strains and body force components equal to zero except for T~030)

and y\OiO), y~OiO), y~030), one then obtains the strain-displacement relations:

u(O,O) - W - W
3,3 - .3 - ,z (9.3)

the constitutive equations:

T:~?) = A(Ayi~'O) +2py:~?» = 0

T~Ol) = A(Ayi~'O) +2py~030» = N

and the stress equation of motion:

oN 02W
ai+P-pAjjt2 = 0

where

P = P~O,O).

(9.4)

(9.5a)

(9.5b)

Here, (4.5), (7.10) and (9.2) are used. By solving (9.4) for the aerial dilatation el' one easily
computes the voluminal dilatation e as

A
e = y(O,O) = y(O,O)

1 <x<x A+Jl' 33 ,
e - ylo,O) - ---.!!'- .,(0.0)

- kk - A+JlI33
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(9.6)N - A Jl(3A +2Jl) (0,0)
- . (A +Jl) , Y33 .

Substituting (7.8) and (9.3) into (9.6), one finally arrives at the macroscopic constitutive
equation:

N = AEo
W

OZ

and the displacement equation of motion:

02W p -2 a2w
OZ2 +AE - C , ot2 = 0

with

which denotes the bar velocity,

(9.7)

(9.8a)

(9.8b)

9.2 Timoshenko beam theory

Equation (9.2) is now used in the formulation of a linear theory of order (1, 0). For this
particular case, the cross-section and the loading are assumed to be symmetric about the
principal plane (XCX3~ Setting all stress, strains and body force components equal to zero
except for T\OjO), T~ljO) and y\Ol), "diO), y~liO), y~ljO),one can then write the strain components
as:

(0.0) _ 1(OYJ .1,)
Y13 - - --If'

2 oz

where

(9.9a)

(9.9b)

the constitutive relations:

T\ol) = Q = 2AflY\~0>, T~030) = T\~O) = 0

T(I,D) - I [Ay(l,O)+2""o.0)] - 0("") - 1 kk t"'/(O:O:)-

T~ljO) = I 1[Ayn,O) + 2fly~ljO)] = M

and the loads:

(9.10)

P~l,O) = T. (9.11)

In a manner similar to the Bernoulli beam theory, the aerial dilatation is calculated from
(9.10) and has the form:

e l = y~;'O) =
A

Y
(l,O)

, 33 •
+Jl

(9.12)
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Thus, the first equation of (9.10) can be written as:

(9.13)

The equations of motion (9.2) now reduce to

(9.14)

With the aid of (9.9) and (9.13), the displacement equations of motion can be expressed,
(cf. [39]), as

with

(9.15a)

A
C

2 = 2(1 +v)c5. (9.15b)

Here, Co is the velocity of shear waves in an unbounded medium.
It is appropriate to note that the usual correction factor k2 appears in the coefficient

of Q, e.g. for (9.12):

(9.16)

and also in (9.14). This factor is studied in detail by Mindlin and Deresiewicz [40].

10. DISCUSSION

A rigorous derivation of the dynamical theory of beams has been obtained within the
framework of the three-dimensional nonlinear theory of thermo-elastodynamics. The
theory deals with the motion of an initially slender, anisotropic, heterogeneous and elastic
beam of uniform cross-section. In the derivation, the customary Bernoulli-Euler hypothesis
and its contradictions are eliminated, but the effects of transverse shear, transverse normal
strains and rotatory inertia are included. The theory consists ofthe macroscopic beam equa­
tions of motion, the initial and natural boundary conditions, the strain-displacement
relations and the constitutive equations.

The theory is established in a consistent manner by means ofa series expansion method
and a generalized variational theorem. It follows from the foregoing analysis that the use
of series expansion for kinematic variables is indeed comprehensive and tractable. The
variational theorem serves as an averaging procedure and it yields the equations of motion
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as well as the natural boundary conditions in a systematic manner. However, these equa­
tions can be constructed by the direct integration of the field equations as have been
exhibited by Warner [30] and Antman and Warner [32] for beams and by the author [17]
for plates and shells. Furthermore, the series expansion technique might be used for any
other field quantities in lieu of kinematic variables as a starting point. This, of course,
requires that one includes the usual compatibility conditions in the analysis. Moreover,
the theory can similarly be formulated by the use of the direct method and the method of
asymptotic expansion as was already noted.

In Section 9, it was shown that the linear version of the theory includes the familiar
Bernoulli and Timoshenko beam theories as well as the Mindlin beam theory, as special
cases. Also, the isothermal linear theory contains the theories derived by Warner [30] and
more recently by Bleustein and Stanley [31], and it recovers the beam equations, up to
order (1, 1), due to Medick [25, 26], Hertelendy [27] and Volterra [41,42].

The theory is approached within a general framework. Consequently, obtaining a series
of approximate results by simplification in the physical aspect and the kinematic descrip­
tion of the general theory as already pointed out, as well as extending the theory in some
different directions is straightforward. First, two special cases of importance are men­
tioned: one is the counterpart of the Karman plate equations in beams; that is to say, a
nonlinear theory of beams derived by the use of the plane stress assumption and the
Bernoulli-Euler hypothesis. The second case of interest is the one in which both extension
and shear deformation are small compared to unity. In this instance, the products erkerl

and erkWrl are small in comparison to WrkWrl and can therefore be omitted. This approxima­
tion then gives the following form for the strain tensor:

(10.1)

It should be noted that this partially geometrical nonlinearity leads to simpler equations
of motion and stress boundary conditions:

(10.2)

These equations are obtained through the Hamiltonian principle.
The theory presented here accommodates nonlinear torsional motions, in accordance

with (a) the Saint-Venant theory of torsion ofrods and (b) the Vlasov theory of thin-walled
beams. If the loading is at the faces, and the body force and inertia terms are taken equal to
zero, i.e. Q~m.n) = O~m.n) = 0 in (8.9) and the thermal terms are dropped, the nonlinear
theory of the Saint-Venant torsion can readily be obtained by the use of the displacement
field (cf. [35,46]):

00

U3 = L xix~u~m.n)(X3) (10.3a)
m+n=O

with

(10.3b)
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Here, W = W 12,3 denotes the uniform rate of twist and Cmn is a constant. The usual warping
function cj>(x,,) is expressed by

00

cj>(x l' X 2 ) = L CmnxTx~ .
m+n=O

(lO.3c)

In this connection, it is worthwhile to note that by the use of the same kinematic expres­
sions, the thin plate theory and the Karman theory for large deflection of plates have been
established on the basis of linear and nonlinear elasticity theory, respectively, (see, e.g.
(46]). Within the context of these approximations, the linear theory of higher order torsions
has been recently examined in [31], as mentioned above, The Saint-Venant theor..y of torsion
is well developed to cover the torsion of thin-walled beams. This is due to Vlasov [43]. In
a recent paper, by the use ofthe kinematic expressions given in [43J, Popelar [44J presented
a partially nonlinear energy formulation, A modified derivation which eliminates the
customary assumption of rigid cross-sections but also includes the shear effects can readily
be obtained with the aid of the following expressions:

(lOA)
U3 = u~O,O) • cj>(x~) + XI' U~I.0)+ X 2 • U~O,I)

and (10.3c) for the displacement components (d. [44J).
Furthermore, the constitutive relation (7.1) can be used for a class of plasticity problems

as noted in Section 7. For other inelastic materials, the constitutive equations can be con­
structed in a manner similar to the development given in Section 7. Moreover, the initial
stress problem which is of special importance in the stability analysis of columns might be
analyzed, if the line of attack presented is carried back to incremental field quantities
[45, 47]. In like manner, the nonlinear theory of thin beams can similarly be formulated
with the aid of a degenerate series (8.12), as remarked previously. Lastly, the extension of
this theory to Cosserat media and to composites is also straightforward. This has been
done for Cosserat plates and shells [17,48,49] and for composite beams [50], as a generaliza­
tion of the case of Boley and Testa [51, 52].
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AOCTpaKT-Ha OCHOBe TpexMepllOH TeoplHl TepMO-1J1aCTO,llHllaMHKH onpe,lleJlSlIOTCSl HeJlHHeHHhle
OCHOBHble ypaBHeIlHSl:, KacalOmHeCli ,lIBHlKeIlHSl: 6aJlOK, B BH,lIe COCTOSlHHll OTHOllJeHHSl:. l1cnoJlh1yeTCSl:
o6mHH MeTOJ( o606meHHlf, BMeCTe C BapHallMoHHoM cnoco60M. 3aTeM, nOCTOllHHO yCTaHaBJlHBaeTcH
HepapxHH O,llHOMepHhlx npH6J1HlKeHHhlx TeopHH. B aHaJlH3e, o6cylK,lIalOTCSl nO,llp06HO KaK reOMeTpH'leCKHH,
TaK H cjJH3H'leCKHe HeJlHHeHHocTH. li'13 o6mHx pe3YJlbTaToB BblBO,llSlTCSl HenOCpe,llCTBeHHO KJlaCCH'leCKHe
TeopHH HanpHlKeHll1l H ,lIecjJ0pMal\HIl B 6aJlKax. TeopllSl npllcHoco6Hl.\BaeM paCTSllKeHHe, 1l3rll6 H Kpy'leHMe
BblCmero nopSlJ(Ka ,lIJlll 6aJIOK C nOCTOSlHHhlM nOnepe'lHblM Ce'leHlleM.


